The Scharfetter–Gummel scheme for aggregation–diffusion equations
نویسندگان
چکیده
Abstract In this paper we propose a finite-volume scheme for aggregation–diffusion equations based on Scharfetter–Gummel approximation of the quadratic, nonlocal flux term. This is analyzed concerning well posedness and convergence towards solutions to continuous problem. Also, it proven that numerical has several structure-preserving features. More specifically, shown discrete satisfy free-energy dissipation relation analogous model. Consequently, converge in large time limit stationary solutions, which provide thermodynamic characterization. Numerical experiments complement study.
منابع مشابه
A Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملLocal Equations for the Toric Hilbert Scheme
We obtain local equations for the toric Hilbert scheme, which parametrizes all ideals with the same multigraded Hilbert function as a given toric ideal. We also prove a conjecture of Sturmfels’ providing a criterion for an ideal to have such a Hilbert function.
متن کاملA new numerical scheme for solving systems of integro-differential equations
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ima Journal of Numerical Analysis
سال: 2021
ISSN: ['1464-3642', '0272-4979']
DOI: https://doi.org/10.1093/imanum/drab039